

Statistical Analysis on Large-scale Direct Numerical Simulation of Gas-solid Flow

北小

Limin Wang, Wei Ge, Jinghai Li

(<u>王利民</u>, 葛 蔚, 李静海) Institute of Process Engineering, Chinese Academy of Sciences

Morgantown, WV ·2017.8.8

Outline

→ **Background**

- Enabling Large-scale DNS
- Numerical Results
- Conclusions

Multi-scale Modelling for Gas-solid Flow

Two-fluid Model (TFM) Discrete Particle Model (DPM or CFD-DEM) Direct Numerical Simulation (DNS)

Particle-resolved DNS

Computational grid $h \ll d_p$ Particle diameter

The mesh is reduced to below the size of particle, and the flow field around particle is fully resolved. The fluid-solid interaction force is directly obtained by integrating the viscous stress on the surface of the particles.

DNS can be regarded as the most accurate method, but it's huge computational cost leads to smallscale simulation domain

DNS VS Real Constitutive Laws

Strategies for Enabling Large-scale DNS

Wang L*, Zhou G, et.al. *Particuology*, 2010, 8(4): 379-382.

Outline

Background

Enabling Large-scale DNS

Numerical Results

Conclusions

Discrete Modeling of Particle-Fluid System

Issac Newton

(1643.1.4-1727.3.31)

Newton's second law

F=m**a**

Inter-particle collision

Ludwig Edward Boltzmann (1844.2.20-1906.9.5)

Boltzmann equation

Discrete form

 $f\left(\boldsymbol{x} + \boldsymbol{e}_{i}\Delta t, t + \Delta t\right) - f\left(\boldsymbol{x}, t\right) = \boldsymbol{\Omega}_{i}$

Strategy 1 Improved Solution for Gas Flow

Lattice Boltzmann method

Collision and Streaming Steps

(a) From the node to its neighboring nodes

(b) From the neighboring nodes to local node

Collision step $f_i^*(x,t) = f_i(x,t) + \frac{1}{\tau} [f_i^{eq}(x,t) - f_i(x,t)]$

Computation's Speedup 3000x

Traditional algorithm: 1024 particles, 1024CPU takes one month New algorithm: 1400 particles, single CPU takes 7 days!

Immersed Boundary Method

$$f_{i}\left(\mathbf{x}+\mathbf{e}_{i}\Delta t,t+\Delta t\right)=f_{i}\left(\mathbf{x},t\right)+\frac{1}{\tau}\left(1-\beta\left(\varepsilon_{s},\tau\right)\right)\left(f_{i}^{eq}\left(\rho,\mathbf{v}\right)-f_{i}\left(\mathbf{x},t\right)\right)+\beta\left(\varepsilon_{s},\tau\right)\Omega_{i}^{s}$$

Weighting function

Strategy 2

IBM

Weighting function

Additional collision term

Additional collision term

$$\Omega_{i}^{s} = f_{-i}\left(\mathbf{x},t\right) - f_{i}\left(\mathbf{x},t\right) + f_{i}^{eq}\left(\rho,\mathbf{V}_{s}\right) - f_{-i}^{eq}\left(\rho,\mathbf{v}\right)$$

 $\beta(\varepsilon_s,\tau) = \frac{\varepsilon_s(\tau-0.5)}{(1-\varepsilon_s)+(\tau-0.5)}$

Solid volume fraction $\mathcal{E}_s = \frac{V_{solid}}{V_{cell}}$

Noble D R, Torczynski J R. Int. J. Mod. Phys. C, 1998. 9:1189-1201

Fluid-structure Interactions

Force acting on particle:

$$\mathbf{F}_{f \to p} = \frac{h^2}{\Delta t} \sum_{j=1}^n \left(\beta_j \sum_{i=1}^8 \Omega_i^s \mathbf{e}_i \right)$$

Fluid-induced torque:

$$\mathbf{T}_{f \to p} = \frac{h^2}{\Delta t} \sum_{j=1}^n \left(\left(\mathbf{x}_j - \mathbf{x}_c \right) \times \beta_j \sum_{i=1}^8 \Omega_i^s \mathbf{e}_i \right)$$

Enhance Stability of Parallel Algorithm

Traditional link-based LBM method

(Ladd A.J.C., J. Fluid Mech. 1994,271:311-339)

Our proposed LBM-DEM method

Time step by 100 times

Wang Limin*, Zhou Guofeng, Wang Xiaowei, Xiong Qingang, Ge Wei. *Particuology*, 2010, 8(4): 379-382. Zhou Guofeng, Wang Limin*, Wang Xiaowei, Ge Wei*. *Phys. Rev. E*, 2011, 84(6): 066701.

Large-scale GPU Parallel Computing Mole-8.5 (born on April 24) 2P

Node layout of Mole-8.5

GPU Parallel Implementation

Outline

Background
 Enabling Large-scale DNS
 Numerical Results
 Conclusions

Performance of GPU vs. CPU

(Single GPU) D3Q19 LBM-DEM

Domain size $(W \times H \times L)$	Steps per second (Fermi GPU)	Steps per second (Intel E5520)	Speedup	Perf. (MLUPS) (double precision)
$32 \times 64 \times 32$	1784.1	65.71	27.1	116.8
64×64×64	458.6	16.44	27.9	120.2
64×128×64	237.5	8.167	29.1	124.5
$128 \times 128 \times 128$	60.4	2.043	29.6	126.6
$128 \times 256 \times 128$	33.3	1.056	31.5	139.8

*MLUPS: mega-lattice-updates-per-second

Performance of Large-scale Simulation

D3Q19 TDHS-LBM (Multi GPUs)

Strong scaling for large-scale gas-solid simulations on Mole-8.5

Case	Lattice	GPU	Steps	Time	Perf. (MLUPS)	Perf./GPU	Gflops
1	$1024 \times 1152 \times 1024$	8×8×8	2000	100.2	24111	47.1	10558
2	1536×1728×1536	12×12×12	2000	106.2	76741	44.4	33611

The number of float operations per step of case1: 529 Gflop, case2: 1785.6 Gflop

Largest Scale DNS of Gas-solid Suspensions

1M solid particles & 1G fluid lattices @ 576 GPUs

Chem. Eng. Sci., 2011, 66: 4426-4458; Chin. Sci. Bull., 2012, 57:707–715.

130K solid particles in 3D @ 224 GPUs

3D: 0.384cm x 1.536cm x 0.384cm, 130000 particles (512 X 2560 X 512)

Xiong et al., 2012, Chem. Eng. Sci., 67:422-430

Snapshots for 3D DNS and Drag Distribution

Effect of Mesoscale Structure on Drag

Zhou Guofeng, Xiong Qingang, Wang Limin*, Wang Xiaowei, Ren Xinxin, Ge Wei*. *Chem. Eng. Sci.*, 2014,116: 9–22 Wang Limin*, Zhang Bo, Wang Xiaowei, Ge Wei, Li Jinghai. *Chem. Eng. Sci.*, 2013, 101:228–239.

Scale-dependence of Domain Size

External force field

Sampling box	Θ_{x}	Θ_y	Θ_z	Θ
$4 \times 4 \times 4$	3.21×10^{-6}	2.61×10^{-6}	1.68×10^{-6}	2.50×10^{-6}
$8 \times 8 \times 4$	5.85×10^{-6}	4.23×10^{-6}	1.74×10^{-6}	3.94×10^{-6}
$12 \times 12 \times 4$	8.96×10^{-6}	5.98×10 ⁻⁶	1.76×10^{-6}	5.57×10^{-6}
$16 \times 16 \times 4$	1.25×10^{-5}	7.56×10^{-6}	1.77×10^{-6}	7.28×10^{-6}

Effect of Mesoscale Structure on Statistical Properties of Particles

Liu Xiaowen, Wang Limin, Ge Wei. AIChE Journal, 2017, 63:3-14.

Simplified TFM with EMMS Drag

Qiu Xiaoping, Wang Limin*, Yang Ning, Li Jinghai. Powder Technology, 2017, 314:299-314.

Outline

Background
 Enabling Large-scale DNS
 Numerical Results
 Conclusions

Conclusions

Presented gas-solid statistical analysis of where we have used three strategies for enabling large-scale DNS including:

- A LBM-based DNS algorithm is proposed to simulate gas-solid flow
- LBM-DEM algorithm is feasible to be implemented on GPU
- Large-scale DNS of gas-solid flow has been efficiently run on GPU cluster
- The effects of mesoscale structure on both drag and statistical properties of particles were explored

Further investigations needed in constitutive laws (drag, solid stress, transfer of heat and mass, chemical reactions) Better ways to link resolved models to coarse-grid simulation

Acknowledgements Xiaowei Wang, Qingang Xiong, Guofeng Zhou, Xiaowen Liu

Thank you for your attention!